Reading Public scRNA-seq Data into Seurat
10x Genomics-style
Exp: GSE163558
GSE163558 ├── GSM5004188_Li1_barcodes.tsv.gz ├── GSM5004188_Li1_features.tsv.gz ├── GSM5004188_Li1_matrix.mtx.gz ... ├── GSM5004189_Li2_barcodes.tsv.gz ├── GSM5004189_Li2_features.tsv.gz └── GSM5004189_Li2_matrix.mtx.gz
Based on this patter, we need to separate the files by sample into separated directory first.
|
After separating, the structure will look like this:
GSE163558 ├── Li1 │ ├── barcodes.tsv.gz │ ├── features.tsv.gz │ └── matrix.mtx.gz ... └── PT3 ├── barcodes.tsv.gz ├── features.tsv.gz └── matrix.mtx.gz
Now, we can read and convert each sample into Seurat object, and merge them together.
|
Separated DataFrame
Exp: GSE134520
In this dataset, we have separated expression matrix. What we need to do is to read each file, convert it into Seurat object, and merge.
GSE134520 ├── GSM3954946_processed_NAG1.txt ├── GSM3954947_processed_NAG2.txt ├── GSM3954948_processed_NAG3.txt ... ├── GSM3954956_processed_IMS3.txt ├── GSM3954957_processed_IMS4.txt └── GSM3954958_processed_EGC.txt
|
Reading Public scRNA-seq Data into Seurat