0 Posted 2020-01-22Updated 2024-01-11Python / Data / Machine Learninga minute read (About 165 words)TensorflowTensorflow ##!/usr/locol/bin/python3.6import tensorflow as tfimport numpy as np## creat datax_data = np.random.rand(100).astype(np.float32)y_data = x_data*0.1 + 0.3#### creat tnsorflow structure startWeights = tf.Variable(tf.random_uniform([1],-1.0,1.0))biases = tf.Variable(tf.zeros([1]))y = Weightess =tf.Session()*x_data + biasesloss = tf.reduce_mean(tf.square(y - y_data))optimizer = tf.train.GradientDescentOptimizer(0.5)train = optimizer.minimize(loss)init = tf.initialize_all_variables()###create tensorflow structure end ###sess =tf.Session()sess.run(init)for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(Weights),sess.run(biases))#### add a laier###def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs#####################From https://tensorflow.google.cn/get_started/premade_estimators############### Tensorflowhttps://karobben.github.io/2020/01/22/Python/Tensorflow/AuthorKarobbenPosted on2020-01-22Updated on2024-01-11Licensed under#Machine LearningPythonTensorflow