import tensorflow as tf import numpy as np
x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1 + 0.3
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) biases = tf.Variable(tf.zeros([1]))
y = Weightess =tf.Session() *x_data + biases
loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess =tf.Session() sess.run(init)
for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(Weights),sess.run(biases))
def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs
|