t-sne

t-SNE

Blog:

Python codes

Reference: Cory Maklin: t-SNE Python Example; 2019

import numpy as np
from sklearn.datasets import load_digits
from scipy.spatial.distance import pdist
from sklearn.manifold._t_sne import _joint_probabilities
from scipy import linalg
from sklearn.metrics import pairwise_distances
from scipy.spatial.distance import squareform
from sklearn.manifold import TSNE
from matplotlib import pyplot as plt
import seaborn as sns

sns.set(rc={'figure.figsize':(11.7,8.27)})
palette = sns.color_palette("bright", 10)


X, y = load_digits(return_X_y=True)
MACHINE_EPSILON = np.finfo(np.double).eps
n_components = 2
perplexity = 30
def fit(X):
n_samples = X.shape[0]

# Compute euclidean distance
distances = pairwise_distances(X, metric='euclidean', squared=True)

# Compute joint probabilities p_ij from distances.
P = _joint_probabilities(distances=distances, desired_perplexity=perplexity, verbose=False)

# The embedding is initialized with iid samples from Gaussians with standard deviation 1e-4.
X_embedded = 1e-4 * np.random.mtrand._rand.randn(n_samples, n_components).astype(np.float32)

# degrees_of_freedom = n_components - 1 comes from
# "Learning a Parametric Embedding by Preserving Local Structure"
# Laurens van der Maaten, 2009.
degrees_of_freedom = max(n_components - 1, 1)

return _tsne(P, degrees_of_freedom, n_samples, X_embedded=X_embedded)

def _tsne(P, degrees_of_freedom, n_samples, X_embedded):params = X_embedded.ravel()

obj_func = _kl_divergence

params = _gradient_descent(obj_func, params, [P, degrees_of_freedom, n_samples, n_components])

X_embedded = params.reshape(n_samples, n_components)
return X_embedded

x = np.array([[1, 2, 3], [4, 5, 6]])
np.ravel(x)

def _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components):
X_embedded = params.reshape(n_samples, n_components)

dist = pdist(X_embedded, "sqeuclidean")
dist /= degrees_of_freedom
dist += 1.
dist **= (degrees_of_freedom + 1.0) / -2.0
Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON)

# Kullback-Leibler divergence of P and Q
kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q))

# Gradient: dC/dY
grad = np.ndarray((n_samples, n_components), dtype=params.dtype)
PQd = squareform((P - Q) * dist)
for i in range(n_samples):
grad[i] = np.dot(np.ravel(PQd[i], order='K'),
X_embedded[i] - X_embedded)
grad = grad.ravel()
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
grad *= c
return kl_divergence, grad

def _gradient_descent(obj_func, p0, args, it=0, n_iter=1000,
n_iter_check=1, n_iter_without_progress=300,
momentum=0.8, learning_rate=200.0, min_gain=0.01,
min_grad_norm=1e-7):

p = p0.copy().ravel()
update = np.zeros_like(p)
gains = np.ones_like(p)
error = np.finfo(np.float).max
best_error = np.finfo(np.float).max
best_iter = i = it

for i in range(it, n_iter):error, grad = obj_func(p, *args)grad_norm = linalg.norm(grad)inc = update * grad < 0.0
dec = np.invert(inc)
gains[inc] += 0.2
gains[dec] *= 0.8
np.clip(gains, min_gain, np.inf, out=gains)
grad *= gains
update = momentum * update - learning_rate * grad
p += updateprint("[t-SNE] Iteration %d: error = %.7f,"
" gradient norm = %.7f"
% (i + 1, error, grad_norm))

if error < best_error:
best_error = error
best_iter = i
elif i - best_iter > n_iter_without_progress:
break

if grad_norm <= min_grad_norm:
break
return p

X_embedded = fit(X)
sns.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=y, legend='full', palette=palette)

In sklearn:

tsne = TSNE()X_embedded = tsne.fit_transform(X)
sns.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=y, legend='full', palette=palette)
Author

Karobben

Posted on

2021-11-06

Updated on

2024-01-11

Licensed under

Comments